Cambridge's Science Club for Girls visits the Burns Zebrafish lab at MGH.


Jahangiri L, Sharpe M, Novikov N, González-Rosa JM, Borikova A, Nevis K, Paffett-Lugassy N, Zhao L, Adams M, Guner-Ataman B, Burns CE*, Burns CG.* (2016) The AP-1 transcription factor component Fosl2 potentiates the rate of myocardial differentiation from the zebrafish second heart field. Development. Jan 1; 143(1):113-22

C. Geoffrey Burns* and Caroline E. Burns* Science 4 July 2014: 28-29.

Zhao, L., Borikova, A.L., Ben-Yair, R., Guner-Ataman, B., MacRae, C.A., Lee, R.T., Burns, C.G.*, Burns, C.E.* (2014) Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration Proc. Natl. Acad. Sci.111(4):1403-1408.

Paffett-Lugassy, N., Singh, R., Nevis, K.R., Guner-Ataman, B., O’Loughlin, E.O., Jahangiri, L., Harvey, R.P., Burns, C.G.*, Burns, C.E.* (2013). Heart field origin of great vessel precursors relies on nkx2.5-mediated vasculogenesis. Nature Cell Biology, (Epub ahead of print).

Guner-Ataman, B., Paffett-Lugassey, N., Adams, M.S., Nevis, K.R., Jahangiri, L., Obregon P., Kikuchi, K., Poss, K., Burns C.E*., and Burns C.G*. Zebrafish second heart field development relies on progenitor specification in anterior lateral plate mesoderm and nkx2.5 function. 2013. Development 140.6:1353-1363.

Nevis K., Obregon P., Walsh C., Guner-Ataman B., Burns C. G.*, and Burns C.E*. 2013. Tbx1 is required for second heart field proliferation in zebrafish. Dev. Dyn. doi: 10.1002/dvdy.23928

Zhou, Y., Cashman, T.J., Nevis, K.R., Obregon, P., Carney, S.A., Liu, Y., Gu, A., Mosimann, C., Sondalle, S., Peterson, R.E., Heideman, W., Burns, C.E.*, and Burns, C.G.* 2011. Latent TGF-ß binding protein 3 identifies a second heart field in zebrafish. Nature 474 (7353):645-8.

de Jong, J.*, Burns, C.E.*, Chen, A.T., Pugach, E., Mayhall, E.A., Smith A.C.H., Feldmand H., Zhou Y. Zon L.I (2011). Characterization of immune-matched hematopoietic transplation in zebrafish. Blood 117(16): 4234-4242.

Deacon, D.C., Nevis, K.R., Cashman, T.J., Zhou, Y., Zhao, L., Washko, D., Guner-Ataman, B., Burns, C.G.*, and Burns, C.E.* 2010. The mir-143-adducin3 pathway is essential for cardiac chamber morphogenesis. Development 137(11): 1887-1896.

Burns, C.E.*, Galloway, J.L.*, Smith, A.C., Keefe, M.D., Cashman, T.J., Paik, E.J., Mayhall, E.A., Amsterdam, A.H., and Zon, L.I. 2009. A genetic screen in zebrafish defines a hierarchical network of pathways required for hematopoietic stem cell emergence. Blood 113(23): 5776-5782.

Imamura, S., Uchiyama, J., Koshimizu, E., Hanai, J., Raftopoulou, C., Murphey, R.D., Bayliss, P.E., Imai, Y., Burns, C.E., Masutomi, K., Gagos, S., Zon, L.I., Roberts, T.M., and Kishi, S. (2008). A non-canonical function of zebrafish telomerase reverse transcriptase is required for developmental hematopoiesis. PLoS ONE 3, e3364.

White, R.M., Sessa, A., Burke, C., Bowman, T., LeBlanc, J., Ceol, C., Bourque, C., Dovey, M., Goessling, W., Burns, C.E., and Zon, L.I. (2008). Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2, 183-189.

Rottbauer W, Wessels G, Dahme T, Just S, Trano N, Hassel D, Burns, CG, Katus HA, Fishman MC. Cardiac myosin light chain-2: a novel essential component of thick-myofilament assembly and contractility of the heart. Circ. Res. 2007 99: 323-31.

Peng, C.Y., Yajima, H., Burns, C.E., Zon, L.I., Sisodia, S.S., Pfaff, S.L., and Sharma, K. (2007). Notch and MAML signaling drives Scl-dependent interneuron diversity in the spinal cord. Neuron 53, 813-827.

Lepilina A, Coon AN, Kikuchi K, Holdway JE, Roberts RW, Burns CG, Poss KD. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell. 2006 127: 607-19.

Carney SA, Chen J, Burns CG, Xiong KM, Peterson RE, Heideman W. Aryl hydrocarbon receptor activation produced heart-specific transcriptional and toxic responses in developing zebrafish. Mol. Pharm. 2006; 70:549-61.

Burns CG and MacRae CA. Purification of embryonic hearts from zebrafish embryos. Biotechiques. 2006; 40:274-77.

Burns CE, Zon LI. Homing Sweet Homing; Odyssey of Hematopoietic Stem Cells.  Immunity 2006; 25: 859-862.

Shin JT, Priest JR, Ovcharenko I, Ronco A, Moore, RK, Burns CG, MacRae CA. Human-zebrafish noncoding conserved elements act in vivo to regulate transcription. Nucleic Acids Res. 2005; 33:5437-5445.

Ebert AM, Hume GL, Warren KS, Cook NP, Burns CG, Mohideen MA, Siegal G, Yelon D, Fishman MC, Garrity DM. Calcium extrusion is critical for cardiac morphogenesis and rhythm in embryonic zebrafish hearts. Proc. Natl. Acad. Sci. 2005; 102:17705-17710. 

Burns CG, Milan DJ, Grande EJ, Rottbauer W, MacRae CA, Fishman MC. High throughput assay for small molecules that modulate zebrafish embryonic heart rate. Nature Chem. Biol. 2005; 1:263-264.

Burns, C.E., Traver, D., Mayhall, E., Shepard, J.L., and Zon, L.I. (2005). Hematopoietic stem cell fate is established by the Notch-Runx pathway. Genes & Development 19, 2331-2342.

Ankiewicz DS, Burns CG, Carney SA, Peterson RE, Heideman W. Heart malformation is an early response to TCDD in embryonic zebrafish. Toxicol. Sci. 2005; 84:368-377.

Ransom, D.G., Bahary, N., Niss, K., Traver, D., Burns, C., Trede, N.S., Paffett-Lugassy, N., Saganic, W.J., Lim, C.A., Hersey, C., Zhou, Y., Barut, B.A., Lin, S., Kingsley, P.D., Palis, J., Orkin, S.H., and Zon, L.I.  (2004). The zebrafish moonshine gene encodes transcriptional intermediary factor 1gamma, an essential regulator of hematopoiesis. PLoS Biology 2, E237.

Mably JD, Manzoor-Ali PKM, Burns CG, Chen JN, and Fishman M. heart of glass regulates the concentric growth of the heart in zebrafish. Current Biology 2003; 13:2138-47. 

Rottbauer W, Saurin AJ, Lickert H, Shen X, Burns CG, Wo ZG, Kemler R, Kingston R, Wu C, Fishman M. Reptin and pontin antagonistically regulate heart growth in zebrafish embryos. Cell 2002; 111:661-672.

Burns C, Zon L.I. Portrait of a Stem Cell.  Dev. Cell.  2002; 3, 612-613.

Burns, C.E., DeBlasio, T., Zhou, Y., Zhang, J., Zon, L., and Nimer, S.D. (2002). Isolation and characterization of runxa and runxb, zebrafish members of the runt family of transcriptional regulators. Experimental Hematology 30, 1381-1389.

Burns CG, Ohi R, Mehta S, O’Toole ET, Winey M, Clark TA, Sugnet CW, Ares M Jr, Gould KL. Removal of a single alpha-tubulin intron suppresses cell cycle arrest phenotypes of splicing factor mutations in Saccharomyces cerevisiae. Mol. Cell Biol. 2002; 22:801-815.

Erter, C.E., Wilm, T.P., Basler, N., Wright, C.V., and Solnica-Krezel, L. (2001). Wnt8 is required in lateral mesendodermal precursors for neural posteriorization in vivo. Development (Cambridge, England) 128, 3571-3583.

Gonzalez, E.M., Fekany-Lee, K., Carmany-Rampey, A., Erter, C., Topczewski, J., Wright, C.V., and Solnica-Krezel, L. (2000). Head and trunk in zebrafish arise via coinhibition of BMP signaling by bozozok and chordino. Genes & Development 14, 3087-3092.

Burns CG, Ohi R, Krainer AR, Gould KL. Evidence that Myb-related CDC5 proteins are required for pre-mRNA splicing. Proc. Natl. Acad. Sci. USA 1999; 96:13789-13794.

Burns CG, Gould KL. Connections between pre-mRNA processing and regulation of the eukaryotic cell cycle. In: Chew SL, editor. Post-Translational Regulation of Gene Expression and Its Importance to the Endocrine System. Basel:Karger; 1999, pp. 59-82.

Gould KL, Burns CG, Feoktistova A, Hu CP, Pasion SG, Forsburg SL. Fission yeast cdc24+ encodes a novel replication factor required for chromosome integrity. Genetics 1998; 149:1221-1233.

Erter, C.E., Solnica-Krezel, L., and Wright, C.V. (1998). Zebrafish nodal-related 2 encodes an early mesendodermal inducer signaling from the extraembryonic yolk syncytial layer. Developmental Biology 204, 361-372.

Burns CG, Reedy M, Heuser J, DeLozanne A. Expression of light meromyosin in Dictyostelium blocks normal myosin II function. J. Cell Biol. 1995; 130:605-612.

Burns CG, Larochelle DA, Erickson, H, Reedy M, DeLozanne A. Single-headed myosin II acts as a dominant negative mutation in Dictyostelium. Proc. Natl. Acad. Sci. USA 1995; 92:8244-8248.


(*, equal contribution)